Friday, April 18, 2014

BRIGHTEN THE INNER CITY

Let the Sun Shine In: Redirecting Sunlight to Urban Alleyways




In dense, urban centers around the world, many people live and work in dim and narrow streets surrounded by tall buildings that block sunlight. And as the global population continues to rise and buildings are jammed closer together, the darkness will only spread.

To alleviate the problem, researchers have developed a corrugated, translucent panel that redirects sunlight onto narrow streets and alleyways. The panel is mounted on rooftops and hung over the edge at an angle, where it spreads sunlight onto the street below.

Researchers expect the device to provide illumination to perform everyday tasks, and improve the quality of light and health conditions in dark areas. These dimly lit areas specifically include narrow streets, but the new panel could be used as a greener, cheaper, and more pleasant alternative to fluorescent and other artificial light.

While other commercially available window-like devices can redirect light, they are designed for shade and redirecting glare or for brightening a room-not a narrow street. So the researchers decided to create their own design. They wanted a simple way to redistribute natural light without the need for a tracking device that follows the rising and setting sun.

What they came up with is a panel made of polymethyl methacrylate (PMMA), the same acrylic plastic of which Plexiglas is made. The bottom of the panel is smooth while the top is covered in ridges that are based on a sine wave, the mathematical function that describes everything from light to pendulums.

The researchers used computer simulations to find the size and shape of the grooves that distribute the most amount of sunlight in a wide range of sun positions all year round, whether it's high or low in the sky. A sine-wave pattern is also easy to manufacture.

Using simulations of sunlight shining on an alleyway, the researchers found that their panels increased illumination by 200 percent and 400 percent in autumn and winter, respectively, when sunlight is most limited. They also tested a small prototype and found that it lit up the area as designed.
The next step will be to build a full-scale model 10 times bigger to validate their calculations and to test it in a real alleyway. The team then plans to market and commercialize the panel.

And that may be a small price to pay for the benefits of sunlight. The lack of sun in urban areas doesn't just make life gloomy; it can be harmful to your health. Research has shown that lack of natural lighting can cause severe physiological problems, such as serious mood changes, excessive sleeping, loss of energy and depression.


Tuesday, April 1, 2014

GOOD SOLAR NEWS

Kyocera Solar reduces cost and increases efficiency with new 1000-volt modules

Kyocera Solar Inc. is now offering new 1000-volt solar photovoltaic (PV) modules designed to significantly reduce labor and materials costs while simultaneously increasing overall system efficiency.
The US electrical code was only recently amended to allow 1000-volt solar modules, following a similar development in Europe that enables wider use of high-efficiency 1000-volt inverters.
By specifying a 1000V system instead of the previous 600V standard, installers can reduce total system costs by a substantial amount — up to 20%, according to Kyocera engineers, depending on the individual project.
The cost reduction is achieved in several ways:
  • Because 1000V PV systems incorporate more modules per string, materials and labor costs are minimized by reducing the total number of strings and combiners the system requires. 
  • String cable used for 1000V modules is thinner and uses less copper, making it less expensive to purchase and install. 
  • 1000V inverters are likewise smaller and less expensive to install than their 600V counterparts.

A more long-term advantage of the 1000V system is its ability to minimize resistive losses, also known as “voltage drop” — which is typically about 0.75% lower in a 1000V system than in a comparable system of 600V. This increase in efficiency results in significant energy retention over the 20+ year lifespan of a system.